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Abstract—In two recent papers the author has given the exact analytic expression of the internal
forces in lincar elastic structures composed of uniform prismatic clements. [t was shown that the
member forces are the ratios of two multilinear homogeneous polynomials in the unimodal stiffnesses
of the elements of the structure. The order of the polynomials is equal to the number of nodal
degrees of freedom of the structure. The number of terms of cach polynomial is equal to the number
of statically determinate stable substructures which can be derived from the original structure. The
coctlicients of the polynomials can be computed by employing the equilibrium equations and by
enforcing global compatibility of deformations.

[t was found empirically that the coctlicients of the polvnomial in the denominator were
numerically equal to the square of the determinants of the statics matrices of the respective statically
determinate substructures. As a consequence, the denominator became the sum of the stiffness
matrices of the statically determinate substructures. This is in fact the Binet -Cauchy form of the
determinant of the stiffness matrix of the steucture. Bearing in mind that the inverse of the stiffness
matrix can be expressed as the ratio of the adjomnt matrix of the stiffness matrix divided by the
determinant of the stiffness matrix it became clear that the expressions of the stress resultants stem
from an explicit expression of the adjoint.

The explicit expression of the adjoint of the stiffness matrix lies at the heart of this paper. It is
shown that the adjoint is & congruent transformation of the (V1) compound of the stiffness
matrix, where A is the number of degrees of freedom of the structure. This cleared the way to use
the Binet Cauchy theorem on the product of compound matrices to obtain an explicit expression
tor the adjoint, and, ipso fucto, tor the inverse of the stiflness matrix. Having now the displacements
of the structure, the expression of the stress resultants, which was obtained independently, emerges
in a very clegant manner. The member forees in a structure can be expressed as the weighted sum
of the member forees in all its determinate substructures, when subjected to the applied loads. The
weighting factors are the ratios of the determinants of the stiffiess matrices of the substructures, to
the determinant of the stilfness ntatrix ol the original structure.

Bath the explicit inverse of the stiffness matrix and the expression of the internal forees in the
structure are, at present, of a theoretical nature. The number ol terms involved in the polynomials
is simply excessive for common engineering structures. However, ongoing rescach may yield more
applicable expressions to be used, for instance, in the field of automated design of structures.

The theory is illustrated with the explicit analysis of a stayed mast.

NOMENCLATURE

A, cross-sectional area of component

B, coeflicient of polynomial rekiated to substructure &
Y number of combinations of N clements oul of M
E, Young's modulus of component ¢

I3 M-vector of component deformations

/ moment of inertia of component i
i signed inversion matrix (eqn [ 1)

K N x N stiffness matrix of structure

K, N x N stiffness matrix of substructure &

K"' inverse matrix of K

K| determinant of stitffness matrix

adj K adjoint matrix of K

v (N~ 1) compound matrix of K

L, length of component §

M number of (unimodal) components of structure
N number of unconstrained nodal degrees of freedom
p N-vector of applied nodal loads
'R nth column of Q¥
Q N x M statics matrix of structurce
Q. N x N statics matrix of substructure &

R degree of statical redundancy of structure

R M x N kinematics matrix of structurc
R, N x ¥ kincmatics matrix of substructure &
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unimodal stiffness of component §

M < M diagonal matrix of stffnesses of components of structure

N« N diagonal matrix of stiffnesses of components of substructure &
internal force in component j of structure

internal force in component j of substructure &

M-vector of component forces in structure

M-vector of component forces in substructure &

N-vector of nodal displacernents

product of stitfnesses ot components of substructure &

entry oy of S0
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l. INTRODUCTION

Since the introduction of mathematical programming methods for the automated design
of structures (Schmit. 1960). it has become clear that one needs explicit expressions for the
displacements and internal forces in terms of the design variables. Indeed, mathematical
programming techniques are basically sophisticated trial and error methods to optimize a
constrained objective function. The algorithms usually navigate through a myriad of can-
didate design potnts until a satisfactory solution can be produced. Translated into structural
terms. this calls tor the analysis of all the candidate structures in order to verify whether
they satisty the constraints, a prospect unlikely to accommodate cost-effective minded
cngimneers.

This state of affairs was the impetus for renewed interest in structural reanalyis and
approximate analysis methods. A broad definition of structural reanalysis would encompass
all the techniques which produce exact or approximate estimates of the structural response
without performing a full analysis of the structure. Many ingenious methods hive been
developed over the years, several of which are quoted in the review papers of Arora (1976)
and Abu Kassim and Topping (1985). The most prominent techniques nowadays are based
on truncated, usually lincar, Taylor series expansions of structural response quantitics in
terms ol the cross-sectional design variables. With the exception of but a few, they are
offsprings of the Reciprocal upﬁroximulion. Initially developed for the nodal displacements
of o truss in terms of the cross-sectional arcas, Reciprocial type approximations proved
vitluable for more general structures, and they were also employed for the design of
structures for optimal geometry.

Underlying all these eflforts is the absence of the explicit inverse of the stiffness matrix.
It we had the explicit expression of the inverse of the stiffness matnix, structural reanalysis,
or simply structural analysis for that matter, would be confined to evaluating explicit
expressions. The quest for the explicit inverse of the stiffness matrix in structural theory
bears some resemblance to the quest for Eldorado (the golden one) by the Spanish con-
quistadors. The scarch has long since been called off. Structural engincers scem to have
given up any hope of explicitly inverting the stiffness matrix. Having spent close to two
decades of research in optimal structural design, this author, for one, has developed what
may rightly be called an obsession with the inverse of the stiffness matrix. The effort has
borne fruit, but unfortunately the explicit expressions in their present form are unusable.
This is due to the immense number of terms involved in the equations. Nevertheless, the
results are most interesting. and the way to reach the explicit inverse constitutes the subject
matter of this paper.

The present theory is closely related to results published by Fuchs (1992a) which gave
the analytic expression of the internal forces in a linear elastic redundant truss as a function
of the axial stiffnesses of the clements. Assuming that the structure has M members and vV
nodal degrees of freedom (M = V). it was shown that the internal force in a bar jof a truss
can be expressed analytically as the ratio of two multilincar polynomials of order N, in the
axial stiffnesses of the structure

ZBk’/knk
) M (1)

1 =1
" Y Bur /

k

where the summation index k is carricd out over all the statically determinate stable
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substructures which can be derived from the redundant structure. The ¢,s are the internal
forces in bar j if the external loads are applied to substructure & only. and the ;s are the
products of the stiffnesses of the & bars composing substructure &

T, =S5.5,...5, (N terms) )

where the typical axial stiffness s, = E,4,/L,. and E,. A, and L, are respectively Young's
modulus. the cross-sectional area and the length of element . It was further shown that the
coefficients B, of the polynomials can be computed by enforcing overall compatibility of
deformations.

As stated, the number of terms in the polynomials is equal to the number of statically
determinate stable substructures which can be obtained from the original truss. The total
number of combinations of N bars out of M is

1}
= or 3
where R(=M — N) is the degree of static redundancy of the structure. It should be noted
‘that this is an excessively high number for common engineering structures. even when we
allow for the fact that many combinations result in unstable trusses.

In a subsequent paper (Fuchs, 1992b) the analytic expressions were extended to general
structures composed of uniform prismatic elements, which can also carry bending and
torsional moments. In this case, the products of stiffnesses in eqn (3) include axial stiffnesses,
bending stiffnesses E,7,/L, and torsional stiffnesses G,J,/ L, where [, G, and J, are respectively
the moment of inertia (in both planes of symmetry), the shear modulus and the torsional
rigidity of the cross-scction of member 4. In fact, these expressions can in principle be
applied to all lincar clastic finite clement modcels.

Numerical experimentation with the analytic expressions has shown that the coctlicients
B, ineqn (1) were consistently equal to the square of the determinants of the statics matrices,
and therefore also equal to the products of the determinants of the statics and kinematics
matrices of the corresponding substructures. Consequently every term in the denominator
inegn (1) tsin fact the determinant of the stiffness matrix of the related statically determinate
substructure. Based on the product of determinantal arrays which was found independently
by Binct and Cauchy in 1812, it became manifest that the denominator in eqn (1) was
nothing other than the determinant of the stiffness matrix of the structure.

Recalling that the inverse of a matrix can be expressed as the ratio of the adjoint of
that matrix to its determinant, it was conjectured that the expression of the internal forces
in the structure stem from a proto-cxpression of the inverse of the stiffness matrix. The
missing link was an explicit formulation of the adjoint of the stiffness matrix. As will be
shown in a subsequent section, the adjoint can be expressed explicitly by means of the
theorem of product of compound matrices, also by Binet and Cauchy. [t turns out that the
adjoint of the stiffness matrix is the sum of generic matrices which are multiplied by products
of combinations of (N — ) unimodal stiffnesses of the type shown in eqn (2). Having found
analytically the formulation of the inverse of the stiffness matrix and for that matter the
nodal displacements, the expression of the internal forces in eqn (1) emerge naturally by
premultiplying the nodal displucements with what is called in finite element nomenclature,
the stress matrix.

As stated, the theory is hampered by an inordinate number of terms involved when
applied to practical cases. It is therefore illustrated with a simple example: the explicit
analysis of a stayed mast. The analytical expressions for this structure have a reasonable
number of terms while allowing the reader to visualize the various aspects of the theory.

2. THE STRUCTURAL ANALYSIS EQUATIONS

This preamble is dedicated to writing the structural analysis equations in a form which
will be useful for further developments. Consider a linear elastic truss of given geometry
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consisting of M members and .V nodul degrees of freedom (M = )., which is subjected to
an JN-vector of static louds p applied at the nodes of the structure. The response of the
structure is governed by the fundamental equations of structural theory:

(1) Statics: Qt =p:
(2) Constitutive faw Se=t:
(3) Kinematics: Ru=¢: (4)

where Q is the V x M statics matrix, t is the M-vector of element axial forces, S is the
M x M diagonal natural stiffness matrix (S,, = 4,,5,). &, ts the Kronecker delta, e is the M-
vector of element total elongations. R( =Q") is the M x N Kinematics matrix and u is the
N-vector of nodal displacements.

Similar equations can be written for structures composed of other types of elements
such as beams, shear panels and plates. What sets the analysis equations of the truss
apart from all other structures 1s the fact that the constitutive equations have a diagonal
unassembled stiffness matrix S. When. for instance. bending elements are present in a
structure, the stiffness matrix has 2 x 2 bending matrices along its diagonal, which relate
the two end-moments of the elements to the two end-rotations with respect to the chord.
Using the terminology of Fuchs (1991) we say that a truss clement is unimodal and a beam
clement is bi-modal. The deformation of the latter is charactenized by two quantities whereas
the detformation of the truss clements ts given by one quantity, its axial elongation. If we
consider a 4-node plain strain clement for example, its constitutive law has a 5 x 5 natural
stiffness matrix. Hs deformation pattern can be described by five quantities. For reasons
which will become evident later on, it is usclul to have a diagonal stiffness matrix in eqn
(4).

As in Fuchs (1991) in the case of bending, the clement stiffness matrix can be diagon-
alized by means of a modal analysis and by a congruent transformation based on a modal
matrix. It was shown that thebeam clement is thus structurally equivalent to two unimodal
clements mounted in parallel, a moment and a shear clement. The moment clement deforms
symmetrically and carrics the average bending moment in pure bending. The shear clement
deforms in an antisymmetric mode and carries the differential moments and related shear
forces in “pure” shear. Similarly, the 4-node plane strain clement is equivalent to five
unimodal components mounted in parallel between the four nodes: two flexural, a shear,
a stretching and a uniform extension component (Bathe and Wilson, 1976).

Conscquently, in modal coordinates, every element can be represented by its unimodal
components, which results in a diagonal natural stiffness matrix in eqns (4). Selection of
statically determinate stable substructures from the original redundant one, can be achieved
by choosing arbitrarily submatrices of rank N in the statics matrix Q. The physical counter-
part of this procedure is that substructures are obtained by jettisoning the redundant
components, much in the same way as is done in the case of trusses. In conclusion, eqns
(4) are valid for all lincar clastic finite clement models, including the property that the
unassembled stifTness matrix 8 is strictly diagonal.

3. THE INVERSE OF THE STIFENESS MATRIX

For a mathematical background on matrices and determinants the reader is referred
to Aitkin's (1936) cxcellent book on the subject. This section and the following one draw
liberally on that source.

The inverse of the V x N stilfness matrix K of a structure can be written as the adjoint
matrix of K divided by the determinant of K

L

lej'l\. (s)

IK

The adjoint matrix of K is an ¥ x ¥ matrix whose clements K, are the minors obtained by
crossing out row / and column j of K, multiplied by (— 1) ", Referring to the analysis
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equations (1), the stiffness matrix K can be expressed as the product of the statics matrix,
the natural stiffness matrix and the kinematics matrix

K = QSR. (6)

Note the statics and kinematics matrices are rectangular matrices of order Vx Mand M x N
respectively. The stiffness matrix is a square matrix of order N x V.

The expression for |K| is straightforward. Binet and Cauchy have shown in 1812 that
the determinant of such a product of rectangular matrices can be obtained by selecting all
the NV x V matrices in Q and their corresponding matrices in S and R and summing up the
product of their determinants. A typical submatrix Q, is for instance composed of columns
ij...m (N columns) of Q. The corresponding matrix S, will include rows ij...m and
columns ij...m of S. Similarly R, is formed by rows ij...m of R. The product of the

determinants of these three matrices is a typical term in the expression of |K|

K] = Y 1Qul ISl IR]. M
k

Noting that the determinant of a product of square matrices is equal to the product
of the determinants of the matrices, and since Q,S,R; is the stiffness matrix K, of sub-
structure &, eqn (7) can also be written as

K| = Y IKql. ®
k

Since unstable combinations of N structural clements yicld zero | Q| determinants, we
have the property that the determinant of the stiffness matrix of a structure is cqual to the
sum of the determinants of the stiffness matrices of all the stable substructures which can
be derived from the structure.

Also, S, being diagonal, its determinant is equal to the product of the diagonal entrics
of the matrix. This in conjunction with the property that the determinant of a4 matrix is
equal to the determinant of the transpose of that matrix allows us to write eqn (7) in the
alternative form

K| =;[Qk|2"k' ©)]

The right-hand side of the above expression is reminiscent of the denominator of the analytic
formulation of the internal loads of the structure {eqn (1)]. It suffices to set B, = |Qx]* to
get identical expressions. The remaining step in computing the inverse is to generate an
expression for the adjoint of the stiffness matrix.

4. THE ADJOINT OF THE STIFFNESS MATRIX

Unlike the determinant of a product of rectangular matrices there is no straightforward
expression for the adjoint of a product of rectangular matrices. There is however a Binct-
Cauchy formula for the compound of a product of matrices, and as will be shown, there is
a way to relate the (N~ 1) compound of an N x N matrix to the adjoint of that matrix.

The compound of a matrix is a rather esoteric construct, and the safest way to describe
it is probably to quote Aitkin's definition, verbatim (pp. 90-91) : “Let a matrix be formed
the elements of which are minors of |A| of order & ; let all minors which come from the
same group of & rows (or columns) of A be placed in the same row (or column) of this
derived matrix ; and let the priority of elements in rows or columns of this matrix be decided
on the principle by which words are ordered in a dictionary. ... The matrix with elements
minors of order k constructed in this way will be called the kth compound of A and will be
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denoted by A'*'. It will be defined in the same way even when A is rectangular of order
mxn. ... The order of A" will then be C7 x C."

We will start by expressing the adjoint of the stiffness matrix K in terms of the (V~ 1)
compound of K. Both the adjoint and the (¥ ~ |} compound are matrices of order N x N
and are composed of elements which are minors of order (V—1) of K. They differ in two
respects. In the first instance, the rows and columns of both matrices are in inverse order;
that is. rows (columns) 12....V of the adjoint are the rows (columns) ... 21 of the
compound matrix. Consider for instance element (1. 1) of the adjoint. It is the determinant
obtained from K by suppressing the first row and the first column (the sign will be discussed
shortly). However, according to the definition of the compound matrix. this is element
(N, N) of the (N—1) compound of K.

The two matrices also differ by the sign of their elements. The adjoint is composed of
signed minors, or cofactors. whereas the compound is populated by (unsigned) minors. The
sign of element (4. j) of the adjoint is { — 1)~ Bearing in mind these two discrepancies it is
easy to verify that the adjoint can be obtained by pre- and post-multiplication of the (V- 1)
compound with the signed inversion matrix 1

adj K = K™Y '[! (10)

where the inversion matrix T has, alternately. the values 1 and — | on its secondary diagonal

1= -1 . (i

We now have to find an expression for the (N — 1) compound of the stiffness matrix.
To do so we will use the product form of K {eqn 6) and rely again on Binet and Cauchy
by using the beautiful theorem on the product of compound matrices : the &-compound of
a product of matrices is equal to the product of the A-compounds of these matrices, in the
same order. This theorem also holds for rectungulur matrices. For the problem at hund the
theorem yields

K(.V« H Qi.\i Q)S(.V . URM‘ i) (32}

which in conjunction with eqns (10) and (6) yiclds the Binet-Cauchy form of the adjoint
of the stifTness matrix

Eldj K= 'l’ iy - HSW - i)RM‘- z;“l‘r. (33)

Note, the (N — 1) compounds of Q, S and R are of the respective orders of N x Cy_ 1,
¥ xC¥_,and C¥_, x N, where

v oM (14)

T (N=DIR+

represents the set of unique combinations (N — 1) different columns which can be selected
out of the M columns of the statics matrix. The product IQW~ Y represents the row inversion
(and sign alternation) of Q'¥~ ", and R"~ "I is the column inversion (and sign alternation)
of R¥=1, Also, the (N — 1) compound of the modal stiffness matrix S is a diagonal matrix
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whose non-zero entries are all the combinations of products of (N — 1) stiffnesses in lexical
order, thatis, 12.. .(N=DN, 12...(N=-D(N+1),...,(M=-N+DHM-N+2)... M.

Let g, be the nth column of Q'Y~" (also the nth row of R~ ") and let =, be entry
(n,n) of 8"V~ It is easy to show that the inverse of K (13) can also be written as

T
K_u_ade_z..:q"q"n" )
(K| Y Kl
I's

where the summation index » is carried over all the column indices of the (N — 1) compound
of Q. It will be recalled that the k indices in the denominator run over the statically
determinate and stable subsets of Q.

In summary, the inverse of the stiffness matrix, that is, the flexibility matrix of a
structure, is equal to a sum of matrices divided by a sum of determinants. The determinants
are those of the statically determinate stable subsets of the original structure. The physical
interpretation for the matrices in the numerator is at this point unresolved.

In dynamic problems one often reduces the size of the stiffness matrix by performing
a static condensation on degrees of freedom of secondary importance. Presently the explicit
expression of the inverse of the stiffness matrix does not make allowance for such
considerations.

5. THE INTERNAL FORCES

For the sake of completeness we will show in this section that the expression of the
inverse of the stiffness matrix leads to the analytical expression of the internal forces, which
was found independently. As stated in the introduction to this paper it was felt early on
that the explicit equations of the internal forces originate from a proto-equation of the
displacements much as the stress resultants in finite element analysis arc obtained by pre-
multiplying the displacements by the stress matrix. In equivalent structural terms, we will
now show that eqns (1) result from the pre-multiplication of the displacements by the
product of the natural stiffness matrix and the kinematics matrices

t=SRu=SRK'p (16)

where K~ is given by eqn (15). The denominator in eqn (15) is unaffected by this trans-
formation and indeed we have already seen that it is already in the form given in eqn (1) il
we assume, as was done earlier, that 8, = |Q,|%. As a matter of fact, this implies that the
B,s are positive constants. What is left to be shown is that

IKit =3 SRq.q 7,p (17)

is identical to the numerator in the right-hand side of eqn (1).

Without loss of generality we will describe the process of matching the numerator in
eqn (1) with the right-hand side of eqn (17) with the help of a 3 x 4 statics matrix (V = 3
nodal degrees of freedom, M = 4 elements). The (N— 1) compound of Q is a 3 x 6 matrix
whose elements are all the 2 x 2 determinants which can be selected from Q in lexical
(increasing) order. Let (abcd) denote the determinants built on rows ab and columns ¢d of
Q. The reversed (and signed) 2-compound of Q becomes

(2312)  (2313)  (2314)  (2323) (2324)  (2334)
1Q® = | —(1312) —(1313) —(1314) —(1323) —(1324) —(1334) | (18)
(1212)  (1213)  (1214)  (1223)  (1224)  (1239)

and R®T7 is the transpose of that matrix. In every column of this matrix the last two digits

SAS 29:16-6
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{...cd) are constant and they uniquely define the column. The entries of a column cd of
1Q ™' are the minors which can be constructed on columns ¢ and d of Q. but for the sign.
In the matrix expansion of adj K in eqn (15). the matrix constructed on column ¢d of IQ'”
will be associated with =, where

Ty = 854 (19

Consider. for instance. the first term on the right-hand side of eqn (17). It is composed
of minors of column 12 of Q.

(515:S)(Rq;2)(q]:p). (20)

Note. n,, being a scalar was moved to the beginning of the expression. The net result of
expression (20) is a 4 x | vector. To evaluate that vector we will consider the three parts of
the above multiplication separately.

(a) 5,5.S—This term yields a diagonal matrix of products of stiffnesses
(51528108 18:80.8, 5280 8,8:8,)

(b)Y Rq,—This is a vector whose entries are the sum of products of elements of Q'
and 2 x 2 signed minors of Q. To evaluate these components, consider the 3 x 3 matrices
obtained by taking column 12 and one of the remiining columns of Q. that is matrices Q.
and Q. . If we take the adjoints of these matrices we will find the vector q,» in the last
row of both adjoints. In other words, q,, is the third row of the adjoint of matrices Q-
and Q.. Recalling that the determinant of a matrix is cqual to the sum of the clements
of any row multiplicd by their cofactors, it can be verified that entries 3 and 4 of ¢, are
the determinants [Q 4] and Q) ,4]. On the other hand, entries 1 and 2 of g, are zero since
the cotactors in q, arc alicn to rows | and 2 of Q4. and expanstons in terms of alien co-
factors vanish identically.

(€} qi.p - Consider the statically determinate (and stable) substructure built on
columns 123, 1t the external loads are applied to that structure alone the internal forces
are given by

ady Q
sy = : (21
70T ’

Since q, - is equal to the last row of Q»;, the last entry of ¢,,,, that is the internal force in
clement 3, can be written as

l

r 11
Ly = 4P (22)
Q2]
Applying the same logic to substructure 124 we obtain the following equations
qip = [Quaslfii2y = 1Quaaltina (23)

Since |S 2] = s5a5, and [S.] = 5,5.5, and using the information which was derived in
the preceding paragraph. in conjunction with the product form of the stiffness matrix [egn
(6)]. the expression in egn (20) yiclds the vector

100 1K sltvass IKIZJ“J,IZJ}T- 24

This simple, although painstaking, exercise gave the term resulting from the first
column of the matrix in eqn (18). It will be recalled that it was constructed on columns |
and 2 of Q. Generalizing this result, one concludes that the contribution of any set of
(N =1) columns of Q to the right-hand side of eqn (17). is an M-vector whose component
J has the following value: if column j is included in the sct of (N — 1) columns then the jth
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component is identically zero; if j is an additional column, one considers the determinate
substructure composed of the initial (¥ — 1) columns and column j, and the jth component
is then equal to the determinant of the stiffness matrix of that substructure, multiplied by
the internal force in element j of that substructure.

Repeating this procedure for the remaining five terms of the right-hand side of eqn
(17) and grouping the results accordingly, one obtains the following expression for the
internal forces in the case of the example

| -
)= (K23l o+ 1K el e+ 1Kl 0039)

K|
l C i
= I_KT(”\':"II“Z"*'“\'“III-IN'*'IK234|’:.:34)
U
e m(Il\|21|t}":3+IK'-“I’J.I}4+IKIJA"J.Z.N)
1 i
t, = I—l_(—l_(lkl”!“'l“-*-IKINI“J;H‘IK”‘I’““) (25)
with
IK| = [K2af + K0l + 1K 3ol + K5 26)

Generalizing this result, the following remarkable expression emerges for the internal forces
in a redundant structure

-

t= | :'-ZIKkltk 27

Ki4

where subscript & runs over all the statically determinate stable substructures which can be
derived from the original structure, |K,| is the determinant of the substructure and t, are
the corresponding internal forces (the forees in the missing elements are zero). It is clear
this this equation is identical, although structurally more significant, to the expression in
egn (1) which was derived independently in Fuchs (1992a) for the case of a truss. Equation
(15) for the inverse of the stiffness matrix and eqn (27) for the internal forces are valid for
all inearly ¢lastic structures,

6. THE EXPLICIT ANALYSIS OF A STAYED MAST

The stayed mast in Fig. | will help in visualizing the technique for generating the
explicit analysis equations. The structure is composed of a vertical cantilever of length L
and of uniform stilfnesses £A and El where E is Young's modulus and 4 and [/ are
respectively the cross-sectional arca and the moment of inertia of the mast. The vertical
deflection of the mast under the tip-load P is stiffened by three struts of stiffness £4,, EA,
and EA, which develop internal axial forces ¢, £, and 1, respectively. Following Fuchs
(1991) the mast is cquivalent to three unimodal elements mounted in parallel, an extension
clement with axial force ¢4, a shear element which carries the shear force 21¢/L and the
rclated differential moment ¢4 and a moment element carrying the average moment ¢, of
the mast. Consequently, the structure is composed of six unimodal elements as shown in
Fig. 1, with stiffnesses [the diagonal entries of the stiffness matrix S in eqn (6)]

s={EA2L J2EAy2L J3EA,2L EA/L 3EIL EIL)". (28)

In the figure, the shear element is drawn with a hinge, since this element is structurally
identical to a uniform beam with a hinge at mid-span. Similarly, thec moment element is
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indicated by a shear release, since it behaves exactly as a uniform beam with a shear release
anywhere along its span.

The three nodal equilibrium equations at the tip of the mast yield the following statics
matrix

INE \@ 10 4L 0
Q=511 /2 /3 2 0 o0 (29)
o 0 0 0 2 2

From this redundant structure (M = 6, N = 3) one can derive C$ = 20 [eqn (3)] com-
binations of statically determinate substructures out of which only 16 are stable. The statics
sub-matrices Q, are obtained by selecting combinations of three columns of Q. Stable
combinations are characterized by a non-zero determinant. Keeping in abeyance the
expression of the inverse of the stiffness matrix, the internal forces can be written directly
from eqn (1), and using B, = |Q.|® to compute the coefficients. Table | shows the internal
forces ¢ for the 16 stable substructures and Table 2 gives the corrusponding B, coefficients.
The second column in both tables lists the three elements composing that substructure. An
asterisk in Table | indicates that the force in that element is zero because the element is
missing in the substructure.

With regard to the explicit form of the inverse of the stiffness matrix feqn (15)]. the
approach is based on computing the (NV— 1) or 2-compound of Q. This is a 3 x 15 matrix
(C$ = 15, eqn 14) the columns of which are obtained by evaluating in turn the three
determinants built on the combination of columns 12,13,...,56 of Q and storing them
columnwise, and in lexical order, in Q'*'. Table 3 gives the compound matrix in transposed
position, the sccond column of the table indicating the columns in Q from which the three
determinants were computed. The reordered matrix 1Q'® used in the expression of adj K
in eqn (13) is obtained by permuting rows 1| and 3 in Q'¥ and by multiplying row 2 by
{ —1). The generic matrices of the adjoint are obtained by sclecting the 15 columns g, of
1Q'® and forming the product q,q) and multiplying the result by n,. This yields the
following expression for the adjoint of the stiffness matrix

Table 1. The internal forces in the substructures of the stayed mast

k Element 1, I 1y [ [ s
— — — — — - —
N RX — — — — — —

L1 2/3-1) -V2/3-1 . . 0 .

2 126 2(J3-D -V2/3-1 y * * 0
— 134 — — — — — —

3138 V3 y -1 . 0

4 136 3 . -1 * * 0

5 145 243 . . -1/ /3 0 .

6 146 2/3 . y -11/3 . 0

7156 0 . . . L2 ~-L2
- M — — — — — -

§ 235 . JO3-  =20(/3=-1 . 0 .

9 236 . NOIWERSY -2/(/3-1 . . 0
1o 245 . 2 . -1 0 *
1 46 . V2 . -1 . 0
12 256 . 0 . . L2 ~Lp2
3 345 . . 2 -3 0 .
14 346 . . 2 -3 * 0
15 356 . . 0 . L2 -L)2
16 456 . . . 0 L —Lj2
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Fig. 1. The stayed mast and its unimodal components.

Table 2. The B, constants of the stayed must

k  Element 8, k  Elcment 8,

l 125 (W3- 9 236 (V/3I-D8
2 126 (/3-8 10 245 12

3 135 1/4 I 246 12

4 136 1/4 12 256 L}

5 145 34 13 345 14

6 146 34 14 346 14

7 156 1L 15 356 Lt

8 235 (WJI-D8 16 456 4L

Table 3. The 2-compound statics matrix of the stayed

mast
Columns
Column inQ Row | Row2 Row3
t 12 J2AS3-pe4 0 0
2 13 12 0 0
3 14 J3n 0 0
4 s -L Jir o
5 16 0 iz e
6 23 Ju3-n4 0 0
7 4 J22 0 0
8 25 2L S S22
9 26 0 S22 S22
1o 34 12 0 0
] 35 -J3L 2 S
12 36 0 12 /I
13 45 -2/L 0 1
14 46 0 0 t
15 56 0 2L 0
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[ 0 0 r 0)( 0T
adj K = 5,5+ 0 0 + 5,5, ()l 0
Li«yé-lu V2 3= 1‘:] (2
0 0 r
FoodSs =2 L =2 LY . (30)
0 0

The inverse of K is obtained by dividing the adjoint by the determinant of the stiffness
matrix.

[t is easy to verity that this inverse, when used in eqn {16) recovers the internal forces
given earlier. If we write the modal stiffnesses explicitly in terms of the cross-sectional areas
and of the moment of inertia of the mast in these equations, we obtain the following explicit
analysis results for the stayed mast

A (3= ,
M= ( VIS 3

S (3~
- A+ \'4 - )A;+2rl)

3 /6(./3 - 1)
\ Y ,\4 A_~+\/3A

LL{, 3J/2 9.3
M—IKI A+ 5 A+ 3 Av+124 (30
with
/2(/3-1)° /3 /6(/3~1)*
Kj=V \Vx AAds+ \/4 A+ A A+ 340+ Y ({; N Aad,

;

3 VA 9./3 , ,
+V/2A:A+~7:A31/L“+—\»/:,—-A_‘A+ { AL+ 124100 (32)
o] -

; <

N

where N, =1, (i = 1,2,3) are the tensile forces in the struts and N and M (=15—1,) are
here respectively the tensile force and the root bending moment of the cantilever, the latter
being defined positively tor tensile stresses in the left outer fiber. Note the scale effect
embedded in the 1/L and 1)L coetlicients. For along and slender mast, the bending
deformation vanishes from the equations and as expected the structure deforms in a pure
truss mode.

7. CONCLUSIONS

This paper has for the first time presented the explicit inverse of the stitfness matrix of
a lincarly elastic structure. It is based on the property that the inverse of a non-singular
muatrix is equal to the adjoint of that matrix divided by the determinant of the matrix. The
method for writing the inverse employs the congruent product form for the system stiffness
matrix of the structure. The matrix is expressed as the product of the statics matrix, the
unasscmbled element stiffness matrix in deformation coordinates and the kinematics matrix,
in that order. For the general case of a redundant structure with M clements and N nodal
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degrees of freedom. the statics and kinematics matrices are rectangular matrices of order
NxM and M x N respectively. It was indicated that by a proper transformation the
unassembled element stiffness matrix is a diagonal matrix of order M x M. This results
from modeling the structure as an assemblage of unimodal elements.

Based on resuits obtained independently by Binet and Cauchy in 1812 it was shown
that the determinant of the stiffness matrix is equal to the sum of the determinants of the
stiffness matrices of all the statically determinate substructures which can be derived from
the original structure. The expression for the adjoint of the stiffness matrix was obtained
from the theorem on the product of compound (rectangular) matrices. also attributed to
Binet and Cauchy. By a proper transformation, the (¥ — 1) compound of the stiffness matrix
was related to the adjoint of the stiffness matrix, N being the number of degrees of freedom
of the structure. This produced the analytic expression of the adjoint of the stiffness matrix
as being the sum of generic matrices which are built with the columns of the transformed
compound matrix. Having obtained the inverse of the stiffness matrix, and ipso fucto, the
explicit expression of the nodal displacements, the element internal forces were computed
by premultiplying the displacements vector by the natural stiffness and kinematics matrices.
The analytic expression of the internal forces in an elastic structure were found to be
identical to results published by Fuchs in an earlier paper.

For the structural designer it is interesting to note that a nodal displacement is the ratio
of two multilincar homogeneous polynomials in the unimodal stiffnesses of the structure, of
order (N —~1) in the numerator and of order N in the denominator. Similarly, an internal
force in a unimodal element is the ratio of two multilincar homogencous polynomials in
the unimodal stiffnesses of the structure, of order N, both in the numerator and in the
denominator.

Unfortunately the analytic expressions, in their present form, seem te defy any practical
application. The number of terms involved in the polynomials is simply immense. Conse-
quently, the analytic inverse of the stiffness matrix can be employed for relatively modest
structures only, or for structures with a low degree of static redunduncy. For common
engineering structures, one will rely on accepted numerical techniques.

Engincers, confronted with real world problems, occasionally derogate the concerns
of fellow mathematicians. Redeeming Binet and Cauchy’s scemingly esoteric work on
compound matrices, laid down close to two centuries ago, was therefore a stimulating
exercise in humility. In this spirit, it is hoped that the analytical expressions of the inverse
of the stiffness matrix, the nodal displacements and the member forces of a linear elastic
structure, will, in time, transcend the academic realm and find their way to the practice of
structural engineering.
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